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1    Historical Background 

1.1 Lattice Gases 

The first isotropic lattice-gas automata (LGA) for hydrodynamics were introduced in the late 1980's [1. 2, 3]. 
Such models consist of discrete particles moving and colliding on a lattice, conserving mass and momentum 
as they do. If the lattice has sufficient symmetry, it can be shown that the density and hydrodynamic velocity 
of the particles satisfy the Navier-Stokes equations in the appropriate scaling limit. 

This method exploits an interesting fact of kinetic theory: The Navier-Stokes equations are the dynamic 
renormalization group fixed point for the hydrodynamic behavior of a system of particles whose collisions 
conserve mass and momentum. This is why a wide range of real fluids with dramatically different molecular 
properties - such as air, water, honey and oil - can all be described by the Navier-Stokes equations. A lattice 
gas can then be understood as a "minimalist" construction of such a set of interacting particles. Viewed in 
this way, it is perhaps less surprising that they satisfy the Navier-Stokes equations in the scaling limit. 

For a time, lattice-gas models were actively investigated as an alternative methodology for computational 
fluid dynamics (CFD) [4]. Unlike all prior CFD methodologies, they do not begin with the Navier-Stokes 
equations; rather, these equations are an emergent property of the particulate model. One often overlooked 
advantage of this approach is the unconditional stability of such algorithms. By insisting that lattice-gas 
collisions obey a detailed-balance condition, as do real collisions, we are ensured of the validity of Boltzmann's 
H theorem, which provides a Lyapunov function ensuring the stability of the numerical algorithm. More 
glibly stated, lattice gases avoid numerical instabilities in precisely the same way that Nature herself does 
so. 

In spite of these appealing features, the presence of intrinsic kinetic fluctuations makes lattice-gas models 
less than ideal as a CFD methodology. Accurate values for the velocity field at selected locations, or even 
for bulk coefficients such as drag and lift, have an intrinsic statistical error that can be reduced only by 
extensive averaging. Consequently, many CFD researchers who appreciated the emergent nature of lattice- 
gas hydrodynamics but wanted to eliminate (or at least control) the level of fluctuations, turned their 
attention to the direct simulation of the Boltzmann equation for lattice gases; this is the lattice Boltzmann 
approach, described below. On the other hand, the presence of such fluctuations in a simple hydrodynamic 
model make lattice gases an ideal tool for studying the statistical physics of fluids, molecular hydrodynamics, 
and complex-fluid hydrodynamics. Not surprisingly, these remain the method's principal application areas. 
Thus, lattice-gas models have evolved into a kind of "fast" molecular dynamics (MD). For these reasons, 
this report will aim to contrast lattice-gas methods with MD, and lattice Boltzmann methods with CFD. 

1.2 Lattice Boltzmann Methods 

Models that aim to evolve a real-valued single-particle distribution function, rather than the discrete particles 
themselves, are called lattice Boltzmann (LB) models [5]. Such methods eliminate particle discreteness effects, 
including kinetic noise and fluctuations. Early attempts along these lines restricted attention to Boltzmann 
equations for actual lattice gases [6]. It was soon realized, however, that these quickly become unwieldy 
as the number of possible particle velocities increases. In order for lattice Boltzmann models to become 
practical tools, it was necessary to develop simplified collision operators that did not necessarily correspond 
to an underlying lattice-gas model. The most successful collision operators of this type are those of the form 
due to Bhatnager, Gross and Krook [7], and these have given rise to the so-called lattice BGK models [8]. 

Lattice BGK collision operators allow the user to specify the form of the equilibrium distribution function 
to which the fluid should relax. For lattice gases obeying a detailed balance 1 condition, this is known to be a 
Fermi-Dirac distribution. Having abandoned lattice-gas collision operators, however, it seemed unnecessary 
to continue to use lattice-gas equilibria, and practitioners exploited the freedom of choosing lattice BGK 
equilibria to achieve certain desiderata, such as Galilean invariance, and the correct form of the compressible 
Navier-Stokes equations. 

The alert reader will have noticed, however, that the evolution to lattice-BGK methods has jettisoned the 
last vestiges of kinetic-level physics that might have been left over from the original lattice-gas models. The 
move to a Boltzmann description of the lattice gas eliminated kinetic fluctuations, but at least it retained an 

1 Actually, a weaker condition called semi-detailed balance suffices for this purpose. 



^-theorem; that is, its global equilibrium still extremized a Lyapunov function of the dynamics. The move 
to lattice-BGK operators and the arbitrary legislation of the equilibrium distribution function, however, 
completely abandoned even the concept of detailed balance and the if-theorem. Without a Lyapunov 
function, lattice-BGK methods became susceptible to a wide variety of numerical instabilities which are 
ill-understood and remain the principal obstacle to the wider application of the technique to the present day. 

1.3 Quantum Lattice-Gas Automata 
From a computational point of view, the distinction between lattice-gas and lattice Boltzmann models can be 
understood in terms of the requisite data structures. Lattice-gas particles can be represented by discrete bits, 
reflecting the presence or absence of particles with given locations and momenta. Lattice Boltzmann models 
require real numbers on the lattice to represent the corresponding values of the single-particle distribution 
function. It is somewhat of a logical progression then to ask what might be accomplished with a complex- 
number representation. One answer is provided by work of Meyer [9], and of Boghosian and Taylor [10,11,12]: 
By interpreting the complex quantities as quantum amplitudes, and insisting that their collisions be unitary 
transformations, it is possible to create a lattice model whose "hydrodynamics" are the Schrödinger equation 
for a single particle in an arbitrary potential well. 

Since the Schrödinger equation for N particles in D dimensions evolves in an ND dimensional configu- 
ration space, a lattice of ND dimensions must be used for the corresponding quantum lattice-gas automaton 
(QLGA). This becomes unwieldy very quickly on any classical computer. As shown by Boghosian and Tay- 
lor [12], however, a D dimensional array of real unitary scatterers, in which complete quantum coherence is 
maintained, could in principle be used to perform this computation in the laboratory in a time independent 
of N. Thus, quantum lattice-gas automata have become a paradigm for quantum computation, rather dif- 
ferent from other quantum computing paradigms currently under consideration. This paradigm is a direct 
embodiment of Feynman's observation that a quantum mechanical system is perhaps best simulated by 
another quantum mechanical system [13]. 

1.4 Motivation for the Present Work 
The preceeding subsections provide the historical context for the collaboration between Boston University 
and AFRL, under the terms of AFOSR Grant F49620-97-1-0172, "Lattice-Gas Models of Complex-Fluid Hy- 
drodynamics." Lattice-fluid algorithms attracted the attention of the Lattice-Gas Theory and Computation 
group at the Space Vehicles Directorate of AFRL who initiated AFOSR task 2304CP to study their appli- 
cation to fluids, complex fluids, and quantum computing. The Center for Computational Science at Boston 
University provided theoretical and computational support to this group for their work on the following 
three extensions of the lattice-fluid methodology: 

• Exploitation of the role of LGA as an accelerated MD to study the hydrodynamics and rheology of 
complex-fluids and droplets 

• Stabilization of LB models by the reintroduction of an H theorem 

• Development of QLGA models for advanced simulation of electronic structure and fluid dynamics on 
quantum computers 

This report shall describe the progress made in each of these areas as a result of the collaboration. The 
presentation is intended to emphasize the motivation and significance of the principal discoveries made. 

The escalation of interest in lattice-fluid models has led to a series of successful international meetings 
on "Discrete Methods of Fluid Mechanics." The seventh such meeting was held in Oxford, England in July, 
1998. The proceedings of this meeting were edited by the principal investigator of this grant, and published 
as a special issue of the International Journal of Modern Physics C. The table of contents of this special issue 
is presented in Appendix C. The next meetings will be in Santa Fe, New Mexico (2000), Cargese, Corsica 
(2001), and Shanghai (2002). 



2    Principal Areas of Study 

2.1    Lattice Models for Complex Fluid Dynamics 

Complex fluids are those which, owing to chemical makeup and/or thermodynamic properties, exhibit a 
variety of emergent structures over broad scales of length and time. Examples include polymers, liquid 
crystals, emulsions and microemulsions, colloids, glasses and granular materials. Emulsions and microemul- 
sions are examples of amphiphilic fluids - they contain a species of amphiphile, or surfactant, whose free 
energy is lowered when it is on an interface. This effectively arrests the phase separation process, since that 
tends to reduce interface, and results in stable droplets or extended structures whose interfaces are loaded 
with amphiphile. There are a great many open questions concerning the dynamics of this arrested phase 
separation. 

Because hydrodynamic equations are often not known for such materials, researchers sometimes resort 
to molecular dynamics in an effort to elucidate their time-dependent behavior. Such molecular dynamics 
simulations must evolve on time scales of 1CT15 seconds, and are therefore not suitable for studying phenom- 
ena that develop on much longer mesoscopic and macroscopic time scales. Emulsion droplets, for example, 
involve the organization of order 3 x 107 molecules on length scales of order 50 nm (5 x 10-6 cm), and 
time scales of order 10~7 seconds. It would thus take on the order of 3 x 1015 molecular dynamics particle 
pushes to see the formation of a single such droplet. This is marginally possible today, and indeed it has 
been accomplished for individual micelles using supercomputer facilities [14]. 

By contrast, lattice fluid models effectively offer a coarse-grained version of molecular dynamics. In 
particular, lattice-gas particles typically collide on the order of once per time step, and they move one 
lattice unit between collisions. Thus, a single lattice-gas time step corresponds to about a mean-free time of 
evolution. Likewise, a single lattice site represents on the order of a cubic mean-free path of fluid. Since it 
contains order 10 lattice-gas particles, each lattice-gas particle represents approximately 10-1 cubic mean-free 
paths of fluid. 

For dense fluids - i.e., liquids - a mean-free time is about 5 x 10-13 seconds; this is about 500 times longer 
than a single MD time step, but still about 200,000 times smaller than the micelle formation time. Likewise, 
a mean-free path is a few nanometers long; this is much longer than a single MD step (order 3 x 10"n cm), 
but order 10 times smaller than a micelle diameter. A cubic mean-free path then contains something in the 
vicinity of 4 x 104 particles, so one lattice-gas particle represents about a tenth of this, or 4 x 103 molecules. 
The total potential computational savings of lattice-gases over MD is thus (500)(4 x 104) ~ 2 x 106. Thus, 
order 2 x 109 lattice-gas particle pushes will be sufficient to form a single micelle, and a 100 x 100 grid is 
sufficient to resolve an entire field of micelles. This reduces the problem from one that is marginally tractable 
on a supercomputer, to one that is easily performed on a workstation. 

One of the results of AFOSR grant number F49620-95-1-0285 was a lattice-gas model of amphiphilic 
fluids in two spatial dimensions. Such fluids consist of two immiscible phases which are made to mix by 
the addition of a surfactant or amphiphile, and have a wide variety of applications in the Air Force and 
throughout industry. In a 1996 paper in the Proceedings of the Royal Society of London [15], which was 
written as part of grant number F49620-95-1-0285, we showed how the lattice-gas methodology could be 
extended to model an amphiphilic fluid. During grant number F49620-97-1-0172, which is the subject of 
this paper, I am pleased to report that we made substantial progress on this model. Most importantly, we 
extended it to three spatial dimensions [16], and we developed a lattice Boltzmann version of the model as 
well [17]. 

The three dimensional version of the lattice-gas model for amphiphilic fluids was constructed on the 
three-dimensional projection of the four-dimensional face-centered hypercubic (FCHC) lattice. This lattice 
is known [3] to yield isotropic Navier-Stokes flow for a single fluid, and has been used as the basis of other 
multiphase lattice-gas models [18]. Phase space is indexed by a lattice position, and a discrete velocity. The 
occupation of each such phase-space location is specified by two bits of species information (representing 
a water molecule, an oil molecule, an amphiphile molecule, or nothing). Phase-space locations with an 
amphiphile also have an director vector, specifying its direction of orientation. 

The FCHC lattice has coordination number 24. These directions are augmented by two rest particles, 
for a total of 26 possible particle velocities at each site. Two bits per direction means that the species 
occupation is specified by 52 bits per site. That is, each site can be in one of 252 species states. Unlike the 



Figure 1: Spherical emulsion droplets in 3D lattice-gas model 
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Figure 2: Wormlike micelles in 3D lattice-gas model 

two-dimensional version of the model, this number is far too high to make a direct lookup table practical for 
determining the collision outcomes. Instead, we make use of the fact that there are three subsets of 8 FCHC 
lattice vectors that lie on the faces of a regular four-dimensional hypercube. We perform sequential collisions 
on each of these three subsets, each augmented by the two rest particles to allow them to "communicate." 
It therefore becomes necessary to construct a lookup table for ten velocities; since there are two bits per 
velocity, the table is indexed by 20 bits, so the number of possible states is 220, or about IM. Since the state 
outcomes are encoded into 4 byte words, the lookup table requires 4 Mbytes of local memory, which is easily 
within the capability of modern multiprocessors. 

The three-dimensional model was shown to exhibit all of the phenomenology of its two-dimensional 
counterpart - and much more. Fig. 1 shows emulsion drop formation in a mixture of oil, water and surfactant. 
Fig. 2 shows the subtle "wormlike" micelle phase, and Fig. 3 shows a lamellar phase. It is interesting to 
note that a lamellar phase was never observed in the two-dimensional lattice-gas model (without shear). In 
a recent publication, we have pointed out that this is due to a theorem of Peierls, who pointed out that 
statistical equilibria that vary in only one of D dimensions are always unstable with respect to thermal 
fluctuations at any positive temperature for D = 2, but may be stable below a finite temperature for D = 3. 



Figure 3: Lamellar phase in 3D lattice-gas model 

In addition, we developed a lattice Boltzmann model of amphiphilic fluids [17], which can be run in 
either two or three dimensions. The model is based on the Shan-Chen paradigm [19] for adding molecular 
interactions to a lattice Boltzmann model. This model exhibits droplet and lamellar phases in two spatial 
dimensions, and these are shown in Figs. 4 and 5, respectively. Since lattice Boltzmann methods lack kinetic 
fluctuations, they are not subject to the above-mentioned Peierls instability, and presumably this is why 
they can exhibit lamellae in two dimensions. 

Finally, we have applied these methods to problems of porous flow and pollution remediation [20]. Fig. 6 
shows the forced flow of two immiscible fluids in a porous medium, with and without the presence of 
amphiphile in the invading species. It can be seen that the interface is more effectively broken up in the 
presence of amphiphile, resulting in dramatically different flow properties. This effect is important in the 
removal of hydrophobic pollutants by in situ remediation methods. 

2.2    Entropie Lattice Boltzmann Models 

As noted in the Introduction, lattice BGK methods lack an ff-theorem, and are plagued by a variety of 
ill-understood numerical instabilities. In recent work, we have demonstrated a generalization of the BGK 
technique that makes it possible to reintroduce an if-theorem in many cases. In work begun during the 
period of this grant, we formulated a general program for the construction of "entropically stabilized" 
lattice Boltzmann models, and illustrated its application to several example problems. The expected time 
of publication of this work will be in early 2000 [21]. 

The crux of the idea is to encourage the model builder to specify an appropriate H function (Lyapunov 
function) for the model, rather than try to blindly dictate an equilibrium state, as is done for BGK models. 
Of course, specifying a form for H determines the equilibrium distribution, but it also governs the approach 
to this equilibrium. It can therefore be used to control the stability properties of the model. It should be 
emphasized that the presence of a Lyapunov function guarantees the nonlinear stability of the model, which 
is a much stronger condition than linear stability. 

We showed that collision operators that are constructed to increase H defined in this way are similar 
in form to the lattice BGK collision operators, except that their relaxation parameter may depend on the 
current state. As a result, the transport coefficients may have a certain minimum value in models of this type 
but these minimum values are often actually zero. This would seem to make possible the construction of fully 
explicit, perfectly conservative, absolutely stable algorithms with arbitrarily small transport coefficients. In 
fact, we showed that the ultimate limitation to the application of these algorithms for very small transport 
coefficients come from considerations of accuracy, rather than stability. 

Fig. 7 shows the decay of the amplitude of an initially sinusoidal density profile in a simple entropic 
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Figure 4: Two-dimensional domain growth in a ternary (oil-water-surfactant) fluid. Colour (oil-water, left) 
and amphiphile director (right) distributions are both shown at lattice timestep t = 16000 
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Figure 5: Formation of a lamellar phase in a ternary oil-water surfactant lattice Boltzmann fluid.  Colour 
(left) and amphiphile (right) distribution are shown, both at lattice timestep t = 20000 



Figure 6: Flow of immiscible fluid through porous medium, without (left) and with (right) amphiphile. Note 
that the presence of amphiphile breaks up the interface, substantially altering the character of the flow. 
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Figure 7: Decay of sinusoidal density profile for n = 0.99999 

lattice Boltzmann model of diffusion. This decay rate can be used to infer the diffusivity of the model, 
and this is compared against the corresponding theoretical value in Table 1. The parameter n is related (in 
a somewhat complicated fashion - see the reference [21] for details) to the factor by which the Lyapunov 
function changes due to a given collision. When it is equal to unity, the Lyapunov function does not change 
at all, and the diffusivity vanishes; this is the marginally stable situation. Agreement between theory and 
numerical experiment is good until K is extremely close to unity, so the diffusivity is extremely small, and 
the time required for decay of kinetic modes is not well separated from the bulk modes of interest. This gives 
rise to the "ringing" exhibited in Fig. 8. Nonetheless, the method is very promising because if viscosities 
could likewise be made this small, very high Reynolds number simulations would be possible. 

2.3    Quantum Lattice Models 

Quantum Lattice-Gas Automata (QLGA) is a new quantum computing paradigm, motivated by lattice-fluid 
models.  To the extent that the LGA and LB methods can be thought of as discrete bits and real-valued 
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K •^theory ■^meas 

0.9 1.852 x 10"2 1.75364 x 10~- 
0.99 1.684 x 10~3 1.67419 x 10~3 

0.999 1.668 x 10~4 1.66674 x 10-4 

0.9999 1.667 x 10-5 1.66198 x 10-D 

0.99999 1.667 x 10-6 2.28751 x 10~6 

Table 1: Theoretical and measured values of the diffusivity for various values of K. 

quantities moving about on a grid, respectively, then a QLGA for a single quantum particle can be thought 
of as complex amplitudes doing likewise and colliding according to unitary transformations at each site. Just 
as the real-valued quantities of the LB method represent occupation probabilities, so do the squares of the 
moduli of the complex amplitudes of a QLGA. As these amplitudes move about and collide on the spatial 
grid, they can interfere with each other, giving rise to behavior that is not possible with ordinary lattice-gas 
automata. 

Whereas an LGA with N bits can be in any one of 2N distinct states, a QLGA can be in a complex 
superposition of all of those 2N states - although conservation of mass (and momentum if appropriate) 
restricts the evolution to particular sectors of the full Hilbert space. It follows that in order to consider 
QLGA with more than a single particle, it is necessary to add dimensions to the configuration space for each 
additional particle. As noted in the introduction, this becomes rapidly intractable on any classical computer, 
but poses no extra problem for a quantum computer [9, 10, 11, 12]. Indeed, QLGA can be regarded as a 
novel paradigm for computational physics on quantum computers. 

The Space Vehicles Directorate at AFRL is currently engaged in a program of realizing quantum com- 
putation using nuclear magnetic resonance (NMR) apparatus. The program's collaborators also include 
researchers at the M.I.T. Francis Bitter Magnet Laboratory. The NMR apparatus used is very nearly "off 
the shelf"; it required very little modification from those used for medical imagery. The idea is that, by 
placing certain organic molecules in a strong magnetic field, one can control the spin states of various nu- 
clear spins using radio frequency. The nuclear spins are coupled by the electronic structure of the molecule. 
Because the NMR sample contains order 1018 molecules, the measured signal effectively averages over these, 
yielding a high signal-to-noise ratio. (It is to be emphasized, however, that only spins within the same 
molecule enter into a single computation.) The apparatus is able to localize subsets of the molecules accord- 
ing to their spatial position by using field gradients. To date, a universal quantum gate with three quantum 
bits has been achieved in this way at M.I.T.; up to seven uncoupled quantum bits have been achieved at the 
Los Alamos National Laboratory. 

Since Schrödinger's equation can be related, via a well-known mathematical transformation, to Euler's 
equation for inviscid fluid flow, our investigations with the AFRL group have centered on whether or not it 
would be possible to use an array of NMR machines for very fast - and very high Reynolds number - fluid flow 
simulations. Towards this end, we have constructed a (classical) computer simulation of a one-dimensional 
quantum lattice gas with a conserved mass, momentum and energy. The code works by diagonalizing 
the discrete quantum system, and so it can be used only on small lattices. We are able to simulate this 
system under a variety of conditions, however, including the periodic performing of measurements or partial 
measurements during the simulation. Our goal is to simulate systems of various sizes in order to discern the 
scaling behavior of the system in the hydrodynamic limit. 

As of the end of the grant reporting period, this work is ongoing. We expect that it will result in a 
publication in the middle of calendar year 2000 [22]. 

3    Conclusions 

We have described the program of activity of the lattice-gas research collaboration between the Boston 
University Center for Computational Science and the Space Vehicles Directorate of AFRL (under AFOSR 
task 2304CP). This collaboration has centered on three major areas of study: (i) lattice-fluid models for 
droplet formation, (ii) entropic lattice Boltzmann models, and (iii) quantum lattice-gas automata. We have 
provided a detailed account of the principal new results in all three of these areas. Nine publications have 
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resulted from this effort, as well as the sponsorship of the Seventh International Conference on Discrete 
Models for Fluid Mechanics, and the preparation of the proceedings of that meeting as a special issue of the 
International Journal of Modern Physics C. 
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